Skip to content

DES

DES/3DES

  • 3DES takes up to 134.5 cycles per byte

How 3DES is done
1. Encryption of DES of k3 and the plaintext with output O1
2. Decryption of DES of k2 and O1 with output O2
3. Encryption of DES of k1 and O2 with output C

C = Enc_DES (k_1 , Dec_DES (k_2 , Eenc_DES (k_3 , p)))

Key Choices:
- If the three keys are different (yielding 168 key bits)
- If k 3 = k 1 (yielding 112 key bits)
- If k 1 = k 2 = k 3 then its just regular DES (with 56 key bits). This provides backward compatible with DES

Implementation

from cryptopals_lib import fixedlen_xor, to_blocks, int_to_bytes

class DES():
	"""docstring for DES"""
	def __init__(self,key,IV=None):
		
		self.sbox = [[14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
					  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13],
					 [15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
					  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9],
					 [10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
					  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12],
					 [7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
					  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14],
					 [2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
					  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3],
					 [12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
					  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13],
					 [4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
					  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12],
					 [13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
					  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11],]

		self.pre_subkey_permutation = [56,48,40,32,24,16,8,0,57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,
					                   62,54,46,38,30,22,14,6,61,53,45,37,29,21,13,5,60,52,44,36,28,20,12,4,27,19,11,3]

		self.subkey_permutation = [13,16,10,23,0,4,2,27,14,5,20,9,22,18,11,3,25,7,15,6,26,19,12,1,40,51,30,36,46,54,
					               29,39,50,44,32,47,43,48,38,55,33,52,45,41,49,35,28,31]

		self.inital_perm = [57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,
							63,55,47,39,31,23,15,7,56,48,40,32,24,16,8,0,58,50,42,34,26,18,10,2,
							60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6]

		self.expantion_table = [31,0,1,2,3,4,3,4,5,6,7,8,7,8,9,10,11,12,11,12,13,14,15,16,15,16,17,18,19,20,
		                        19,20,21,22,23,24,23,24,25,26,27,28,27,28,29,30,31,0]

		self.sbox_perm = [15,6,19,20,28,11,27,16,0,14,22,25,4,17,30,9,1,7,23,13,31,26,2,8,18,12,29,5,21,10,3,24]

		self.final_permutation = [39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
								  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58,26,
								  33,1,41,9,49,17,57,25,32,0,40,8,48,16,56,24]

		self.block_size = 64	

		self.left_rotations = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]

		#Create Subkeys
		self.key = key
		self._gen_subkeys(self.key)

	def _gen_subkeys(self, key):
		self.subkeys = ["" for _ in range(16)]
		binary_key = "".join(["{0:>08b}".format(int(x)) for x in key])
		output_key = ""


		#Permutate the key using PC1
		for index in self.pre_subkey_permutation:
			output_key += binary_key[index]

		#Split into Left and Right
		left_key, right_key = output_key[:28], output_key[28:]

		for round_num in range(16):
			#shift_rotate_left the left key
			left_key = left_key[self.left_rotations[round_num]:] + left_key[:self.left_rotations[round_num]]

			#shift_rotate_left the right key
			right_key = right_key[self.left_rotations[round_num]:] + right_key[:self.left_rotations[round_num]]

			#Join the keys together into a full key
			full_key = left_key + right_key

			#Create the subkeys
			for index in self.subkey_permutation:
				self.subkeys[round_num] += full_key[index]

	def _round_opperation(self, round_key, right_message):
		right_message_expanded = ""
		s_box_sub = ""
		s_box_out = ""

		#Expand the message to 42 bytes using a permutation with duplicate entries 
		for index in self.expantion_table:
			right_message_expanded += right_message[index]

		#Xor round key with expanded right message
		right_message_expanded = fixedlen_xor(round_key, right_message_expanded)
		
		#Convert right key into 6bit sbox inputs
		sbox_inputs = to_blocks(right_message_expanded, 6)

		#Do sbox subsitution
		for sbox_index, sbox_input in enumerate(sbox_inputs):
			#Generate row and coulmn from input data
			#Row is the first and last bit of the 6bit input
			row_num = int(sbox_input[0] + sbox_input[-1], 2)
			#Comumn is the second through fifth bit of the 6bit input
			column_num = int(sbox_input[1:5], 2)

			#Do sbox subistution with the correct sub index and round and column index
			s_box_sub += "{0:>04b}".format(self.sbox[sbox_index][row_num*16 + column_num])

		#Do final permutation on sbox output
		for index in self.sbox_perm:
			s_box_out += s_box_sub[index]

		return s_box_out


	def _encrypt_message_chunk(self, message_chunk):
		output_chunk = ""

		#Do Permentation on the block of the plaintext message
		for index in self.inital_perm:
			output_chunk += message_chunk[index]

		#Break the message into left and right
		left_message, right_message = output_chunk[:32], output_chunk[32:]

		#Do rounds
		for round_key in self.subkeys:
			#Backup the previous right message
			right_message_copy = right_message

			#Do the Round opperation with the round key
			tmp = self._round_opperation(round_key, right_message)

			#Set Right message to the xor of the round opperation and the left message
			right_message = fixedlen_xor(left_message, tmp)

			#Set the left message to the old right message
			left_message = right_message_copy

		#Join the message parts together but swap the left and the right side
		full_message = right_message + left_message
		output_chunk = ""

		#Do final Permutaiton before the data is outputed
		for index in self.final_permutation:
			output_chunk += full_message[index]

		return int_to_bytes(int(output_chunk, 2))

	def encrypt(self, message):
		binary_message = "".join(["{0:>08b}".format(int(x)) for x in message])
		output_message = b""
		
		#Opperate on each of the 64 byte chunks
		for chunk in to_blocks(binary_message, self.block_size):
			output_message += self._encrypt_message_chunk(chunk)

		return output_message

	def encrypt_3(self, message):
		#Break input key into keys for 3DES
		if len(self.key) == 16:
			key1 = self.key[:8]
			key2 = self.key[8:16]
			key3 = key1
		elif len(self.key) == 24:
			key1 = self.key[:8]
			key2 = self.key[8:16]
			key3 = self.key[16:24]
		else:
			raise Exception("Invaid Key fror 3DES")

		#Do Encryption with first key
		self._gen_subkeys(key1)
		message = self.encrypt(message)
		print(message)

		#Do Decryption with second key
		self._gen_subkeys(key2)
		message = self.decrypt(message)
		print(message)

		#Do Encryption with third key
		self._gen_subkeys(key3)
		return self.encrypt(message)

	def decrypt(self, message):
		binary_message = "".join(["{0:>08b}".format(int(x)) for x in message])
		output_message = b""

		#Decryption is the same as encryption but with the subkeys in reverse order. 
		#Reverse the order of the subkeys
		self.subkeys.reverse()
		
		#Opperate on each of the 64 byte chunks
		for chunk in to_blocks(binary_message, self.block_size):
			output_message += self._encrypt_message_chunk(chunk)

		return output_message
		
	def decrypt_3(self, message):
		#Break input key into keys for 3DES
		if len(self.key) == 16:
			key1 = self.key[:8]
			key2 = self.key[8:16]
			key3 = key1
		elif len(self.key) == 24:
			key1 = self.key[:8]
			key2 = self.key[8:16]
			key3 = self.key[16:24]
		else:
			raise Exception("Invaid Key fror 3DES")

		#Do Decryption with third key
		self._gen_subkeys(key3)
		message = self.decrypt(message)
		print(message)

		#Do Encryption with second key
		self._gen_subkeys(key2)
		message = self.encrypt(message)
		print(message)

		#Do Decryption with first key
		self._gen_subkeys(key1)
		message = self.decrypt(message)
		return message

if __name__ == '__main__':
	des1 = DES(b"64bitKey")
	ct = des1.encrypt(b"Secret Message!!")
	#print(ct)
	pt = des1.decrypt(ct)
	#print(pt)

	des2 = DES(b"64bitKey32bitKey16bitKey")
	ct = des2.encrypt_3(b"Secret Message!!")
	print(ct)
	pt = des2.decrypt_3(ct)
	print(pt)

Security

  • DES can be Brute-forced in less than a day

GMR-2 Crypto Algorithm

Source

  • Used in satellite phones
  • Based on byte operations and 2 S-Boxes from DES.